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Abstract

A control algorithm emulating a dynamic vibration absorber (DVA) is developed for a flexible structure subject to

harmonic disturbances of uncertain frequency. The virtual vibration absorber is mathematically equivalent to a passive

DVA, but its stiffness, inertia and damping coefficient are adjustable by software. Stiffness of the virtual spring is

tuned according to the phase difference between the acceleration of the primary body and the displacement of the

virtual mass. The adaptation algorithm consists of a phase detector with a low-pass filter, similar to that found in a

phase-locked loop. Both undamped and damped vibration absorbers are developed; the former has the advantage of

cleaner vibration neutralization while the latter has a smoother stiffness adaptation. Adaptation rate of the virtual

stiffness is analyzed in detail. The effectiveness of the proposed method is confirmed by simulations and real-time

experiments.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamic vibration absorbers (DVA) are a classic scheme for neutralizing harmonic excitations of a
specified frequency. Properly tuned, an undamped DVA can ideally nullify the effect of external disturbances.
To broaden the scope of applications various designs have been developed to make the DVA’s characteristics
tunable on-line. Many such schemes can be categorized as adaptive passive methods, in which the stiffness
of a passive vibration absorber is adjusted automatically. The methods include adjustment of various
flexible elements: the effective coil numbers of a mechanical spring [1], the length of threaded flexible rods
by stepping motors [2], the shape of a flexible beam [3], the curvature of two parallel beams [4], and the
effective length of a flexible beam by a moving support [5]. A non-contact scheme for changing stiffness
instantly was presented in Ref. [6] by varying the strength of electromagnetic force. Recently ‘‘smart
materials’’ such as shape memory alloy (SMA) [7,8] and magnetorheological (MR) elastomers (the structural
solid analogue of MR fluids) [9] were also employed to serve as variable stiffness elements. Various control
methods can be used for stiffness tuning in an adaptive passive vibration absorber, such as PD control, fuzzy
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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logic [3,8,10], and PI control with integrator anti-windup [7]. In Ref. [7] an explicit stability analysis was
presented for the adaptive algorithm.

Active vibration absorbers are mostly hybrid in the sense that passive flexible elements work alongside the
active components to share the counter-disturbance efforts. Unlike adaptive passive systems, the actuators in
active vibration control directly counterbalance at least part of the external force. These actuators include
linear motors with air springs [11], electromagnetic actuators [12], piezoceramic inertial actuators [13],
electrohydraulic actuators [14] and linear voice-coil motors [15]. The control methods include classical full-
state feedback controls [16], state feedback with frequency-shaped functional [11], neural networks [17], and a
delayed resonator using a time-delayed position feedback [12].

In this paper, a virtual passive approach is adopted in the design of an adaptive vibration absorber.
A virtual DVA can be emulated by a servomotor [18,19] or a linear actuator [20]. It is mathematically
equivalent to a damped or undamped DVA, but the stiffness, inertia and damping coefficient can be readily
adjusted by varying the parameters associated with the virtual elements. This approach is featured by simple
control algorithms and is capable of realizing hard-to-implement mechanical designs, such as a symmetric pair
of vibration absorbers with a sky-hooked spring [18], a multimode DVA for multi-frequency disturbances [19],
and a sky-hooked damper as shown in this paper. The proposed method is an adaptive version of the scheme
presented in Ref. [20], in which a fixed-gain, hybrid vibration absorber was explored. The virtual spring will be
tuned according to the phase difference between the acceleration of the primary body and the displacement of
the virtual mass; the latter is generated and updated in the computer while the former is measured by an
accelerometer. The adaptation algorithm consists of a phase detector with a low-pass filter, similar to that
found in a phase-locked loop (PLL). Dynamics of the virtual stiffness under the adaptation algorithm will be
analyzed in detail based on a quasi-static assumption. That is, the adaptation rate is assumed to be much
slower than the system’s bandwidth. Simulations and experimental results are presented to demonstrate the
performance of the proposed method.

2. Adaptive undamped vibration absorber

2.1. Virtual-passive vibration absorber

Fig. 1a shows an actively controlled mass–spring structure subject to a harmonic disturbance. The
governing equation is as follows:

m €yþ ky ¼ uþ d, (1)

where y is the displacement of the primary body, m is the inertia, k is the stiffness, u is the control input, and d

is a harmonic disturbance of radian frequency o0. The linear actuator can be programmed to emulate a DVA
by the following feedback algorithm:

u ¼ kaðz� yÞ � b _y, ð2Þ

€z ¼
ka

ma

ðy� zÞ, ð3Þ

where z is the displacement of the virtual mass of inertia ma, and ka is the stiffness of the virtual spring.
The derivative term b _y is included to emulate a damper that is required to stabilize the system, since damping
of the original structure is assumed to be negligible. Fig. 1b shows the equivalent mechanical structure for the
closed-loop system of Eqs. (1)–(3). When the characteristic frequency of the virtual DVA is tuned to beffiffiffiffiffiffiffiffiffiffiffiffiffi

ka=ma

p
¼ o0, the harmonic disturbance will be completely neutralized.

2.2. Adaptive virtual vibration absorber

The fixed-gain virtual-vibration-absorber algorithm of Eqs. (2)–(3) is inadequate if the disturbance
frequency is uncertain or is drifting over time. An adaptive scheme based on the phase difference between the
accelerations of the primary body and the displacement of the virtual mass is developed below. It is noted that
the disturbance frequency can also be accurately determined by a fast Fourier transform (FFT) spectrum
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Fig. 1. (a) An actively controlled mechanical structure subject to harmonic disturbances; (b) a virtual dynamic vibration absorber

emulated by the linear actuator.
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analysis. However, it requires gathering of a block of data before the transform is conducted. Intensive
computation is needed at periodic instants of time when, say, 1024 sampling data are accumulated. In contrast
the proposed method updates the stiffness of the absorber progressively, sample by sample. The adaptation
effort is thus distributed evenly over time, making it possible to simultaneously calculate the control input and
adapt the characteristic frequency of the vibration absorber. As the stiffness is being adjusted, the oscillations
are also gradually reduced.

Fig. 2 depicts the vibration control system where the stiffness of the virtual spring, ka, is adjusted by a phase
detector and a low-pass filter. The tuning rule is as follows:

_ka ¼ gc, ð4Þ

_c ¼ �acþ afd , ð5Þ

fd ¼
€y

€yrms

z

zrms
, ð6Þ

where fd is the phase detector for the displacement of the virtual mass and the acceleration of the primary
body, c is the filtered value of fd , and g is a positive constant that determines the updating rate. The subscript
‘‘rms’’ denotes the root mean square value of the signals: €yrms (or zrms) equals

1ffiffi
2
p the amplitude of €y (or z). As

will be explained later, the adaptation rate can be set independently of the magnitude of the disturbance by
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Fig. 2. Adaptive virtual vibration absorber with a phase detector.
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normalizing the signals against their RMS values. In implementation the RMS value is estimated via a low-
pass filter:

vrms ¼
ffiffiffiffi
w
p

, ð7Þ

dw

dt
¼ �a1wþ a1v2, ð8Þ

where v stands for z or €y, and a1 is a positive value smaller (5–10 times smaller) than the nominal frequency of
the disturbance. The adaptation rate of ka from Eqs. (4)–(6) is analyzed below.

From Eq. (3) the transfer function from €y to z is obtained to be

z

€y
¼

ka

s2ðmas2 þ kaÞ
. (9)

At the frequency o0,

z ¼
�ka

o2
0ðka �mao2

0Þ
€y. (10)

Let

€y ¼ ay sino0t,

where ay denotes the amplitude; then from Eq. (10),

z ¼ �az sinðo0t� yÞ,

where

az ¼
ka

o2
0jka �mao2

0j
ay

and

y ¼

0 if ka=ma4o2
0;

p if ka=maoo2
0;

1
2
p if ka=ma ¼ o2

0:

8><
>: (11)
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Since the RMS value equals 1ffiffi
2
p the amplitude, the product of normalized z and normalized €y can be

arranged to be
z

zrms

€y

€yrms

¼ �
ffiffiffi
2
p

sinðo0tÞð
ffiffiffi
2
p
Þ sinðo0t� yÞ

¼ 2 sinðo0tÞ cosðo0t� fÞ, ð12Þ

where

f ¼ y�
p
2
, (13)

such that (from Eq. (11))

f ¼

�p=2 if ka=ma4o2
0;

þp=2 if ka=maoo2
0;

0 if ka=ma ¼ o2
0:

8><
>: (14)

By using the trigonometric identity,

cosðo0t� fÞ ¼ cosðo0tÞ cosfþ sinðo0tÞ sinf.

Eq. (12) can be arranged to be

2 sinðo0tÞ cosðo0t� fÞ ¼ 2 sinðo0tÞ cosðo0tÞ cosfþ 2 sin2ðo0tÞ sinf

¼ sinð2o0tÞ cosf� cosð2o0tÞ sinfþ sinf. ð15Þ

From Eq. (15), sinf can be obtained by filtering out the high-frequency components of the normalized
product of z and €y. That is, if a is chosen to be much smaller than the frequency of the disturbance (a being
5–10 times smaller than o0), Eqs. (5)–(6) can be approximated by

_c ¼ �acþ a sinf. (16)

Define

dka ¼ ka � k�a, (17)

where k�a is the target value for ka, i.e., k�a=ma ¼ o2
0. From Eq. (4), it follows that

d

dt
dka ¼ gc. (18)

Differentiating Eq. (18) one more time and using Eq. (16), we have

d2

dt2
dka ¼ �gacþ ga sinf. (19)

From Eq. (14) and using Eq. (18) again, Eq. (19) can be written to be

d2

dt2
dka þ a

d

dt
dka þ ga sgnðdkaÞ ¼ 0, (20)

where sgnð:Þ denotes the sign function, i.e., sgnðxÞ ¼ 1 if x40, sgnðxÞ ¼ �1 if xo0 and sgnðxÞ ¼ 0 if x ¼ 0.
It can be shown that dka tends toward zero asymptotically by choosing a Lyapunov function to be

V ¼
1

2

d

dt
dka

� �2

þ gadka sgnðdkaÞ.

(Note that the second term of V can be thought as the potential energy of a nonlinear spring of which the
stiffness is inversely proportional to the magnitude of dka.) Differentiation of V leads to

_V ¼ �a
d

dt
dka

� �2

.

Since V is positive definite (therefore lower bounded) and _Vp0, it follows that _V must tend to zero, or ðd=dtÞdka

! 0. Furthermore, as ðd=dtÞdka ! 0, it follows that ðd2=dt2Þdka ! 0, and from Eq. (20) we have dka ! 0.
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2.3. Simulation

Eq. (20) describes the approximate dynamics of ka under the adaptation algorithm. Numerical simulations
are conducted to compare the response of the original system with the analytic solution.

Fig. 3 shows the simulation results for the system of Eqs. (1)–(8), with m ¼ 0:6 kg, k ¼ 296N=m, ma ¼ 0:08,
b ¼ 2, a ¼ 2:5, a1 ¼ 4, and g ¼ 0:3. The parameters of the primary structure are chosen according to the
experimental apparatus shown later. The disturbance frequency is assumed to be o0 ¼ 24:82 rad=s, so that the
target value for ka is 49:3. The initial value for ka is set to be 45, and the adaptation algorithm is activated after
15 s. Fig. 3a compares the response of ka with the solution of Eq. (20) for the same initial conditions. It is seen
that the two curves match well before they are near the target value.

In deriving Eq. (20) it is assumed that f switches between p and �p instantaneously around the target value.
However, in transitions the phase actually varies in a continuous way, causing small oscillations of ka about
the target value as shown in Fig. 3.

2.4. Adaptation rate

The adaptation rate of ka is estimated as follows. Without loss of generality, assume dkað0Þo0. Eq. (20)
becomes

d2

dt2
dka þ a

d

dt
dka ¼ ga. (21)
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Fig. 3. Simulation results of the adaptive vibration absorber: (a) response of ka (solid line) compared with the analytic results (dotted line);

(b) accelerations ( €y) of the primary body.
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From the above equation, ðd=dtÞdka tends to be the value of g. (It slows down abruptly as dka changes sign.)
Hence the maximum rate of change for ka in radian per second can be approximated to be

_ka

ka

¼
g

k�a
. (22)

Eq. (22) provides a criterion in the determination of g. Since the adaptation rate should be slower
than the transient response of the system, the magnitude of g=k�a must be lower than the system’s
bandwidth.
3. Damped vibration absorber

The previous simulations show a small oscillation in ka because the phase changes abruptly as ka crosses k�a.
By adding a sky-hooked dashpot to the vibration absorber, a gradual phase transition can be achieved.
The damped vibration absorber is depicted in Fig. 4, for which the modified control algorithm can be
expressed to be

u ¼ kaðz1 � yÞ � b _y, ð23Þ

€z1 ¼
ka

ma

ðy� z1Þ � ba _z1, ð24Þ

_ka ¼ gc1, ð25Þ

_c1 ¼ �ac1 þ afd , ð26Þ

fd ¼
€y

€yrms

z1

z1rms

, ð27Þ

where z1 is the displacement of the damped vibration absorber.
To analyze the new phase detector (Eq. (27)), the transfer function between z1 and €y is obtained from

Eq. (24):

z1

€y
¼

ka

s2ðmas2 þ basþ kaÞ
. (28)
Phase 
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y

∫
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b

γ
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ma
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Fig. 4. Adaptive vibration absorber with a sky-hooked damper.
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At the frequency o0, we have

z1 ¼
�ka

o2
0ðka �mao2

0 þ io0baÞ
€y. (29)

If €y ¼ ay sino0t, then from Eq. (29)

z1 ¼ �az1 sinðo0t� y1Þ,

where

az1 ¼
ka

o2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðka �mao2

0Þ
2
þ o2

0b
2
a

q ay

and

y1 ¼ tan�1
o0ba

ka �mao2
0

� �
. (30)

(To be precise, the inverse tangent is a ‘‘four quadrant’’ inverse tangent, of which the range is ð�p; pÞ rather
than ð�p=2;p=2Þ.)

Similar to Eq. (15) the product of normalized z1 and normalized €y can be computed to be

z1

z1rms

€y

€yrms

¼ sinð2o0tÞ cosf1 � cosð2o0tÞ sinf1 þ sinf1. (31)

Similar to Eq. (13),

f1 ¼ y1 � p=2, (32)

which is obtained by filtering out the normalized product. In other words, if a5o0, Eqs. (26) and (27) can be
approximated by

_c1 ¼ �ac1 þ a sinf1. (33)

Since y1 varies continuously with ka, so does f1.
3.1. Dynamics of ka in the neighborhood of k�a

The dynamic equation for a small perturbation of ka from the target value will be derived below.
From Eq. (30) and using the identity,

d

dx
tan�1x ¼

1

1þ x2
,

the relation between a small perturbation of y1 and a small perturbation of ka can be approximated by

dy1 ¼
d

dka

tan�1
o0ba

ka �mao2
0

� �
dka ¼

1

1þ
o0ba

ka �mao2
0

� �2

�o0ba

ðka �mao2
0Þ

2
dka

¼
�o0ba

ðka �mao2
0Þ

2
þ o2

0b2
a

dka. ð34Þ

Since f1 ¼ y1 � p=2, so that dy1 ¼ df1. When ka is in the neighborhood of the target value, i.e., as
ka=ma ! o2

0, we have from Eq. (34)

df1 ¼
�1

o0ba

dka. (35)
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From Eq. (25),

d

dt
dka ¼ gdc1. (36)

As ka=ma ! o2
0, f1! 0, so that dðsinf1Þ � df1. From Eq. (33) we have

d

dt
dc1 ¼ �adc1 þ adf1. (37)

The dynamic equation for dka is obtained by substituting Eqs. (35) and (36) into Eq. (37):

d2

dt2
1

g
dka

� �
¼ �

a
g
d

dt
dka �

a
o0ba

dka. (38)

By rearranging terms, the above equation can be expressed to be

d2

dt2
dka þ a

d

dt
dka þ

ag
o0ba

dka ¼ 0. (39)

3.2. Simulation

Numerical simulations are conducted to compare the response of ka of the adaptive damped vibration
absorber of Eqs. (1), (23)–(27) and that of Eq. (39). In the simulations ba is set to be 0:013; the other
parameters are the same as in the previous section. Fig. 5 shows the response of ka and €y with a 1% deviation
of initial ka. It is seen that the trajectory of ka matches well with solutions of the linearized model. There is no
residual oscillation of ka thanks to the additional damper.

Note that Eq. (39) is valid only when ka is in the neighborhood of k�a. For large deviations Eq. (20) is still a
good approximation for the damped vibration absorber. Fig. 6 shows the simulation results for an 8:5% initial
error of ka compared with the solutions of Eq. (20). The two curves match very well until ka nears the target
value. Also note the tradeoff for smoother adaptation in ka: a higher level of residual €y due to the damper in
the vibration absorber.

The above simulations show that, considering the dynamics of the overall system, ka converges to the
target value as predicted by the quasi-static model. This is because the characteristic frequency of the
adaptation dynamics is set to be much lower than that of the nominal system (i.e., the non-adapted system
with a constant ka). The calculations are detailed here. The dominant poles of the nominal system in our
simulations are about �0:86� 19i. (The other poles are �0:87� 28i.) The (lower) characteristic frequency of
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Fig. 5. Response of ka around k�a for the damped adaptive vibration absorber compared with the linearized approximation (dotted line).
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the nominal system is therefore 19 rad/s, and the real part of the dominant poles is a measure of the transient
speed. From Eq. (39) the characteristic frequency of the quasi-static dynamics, denoted by on, is equal toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ag=ðo0baÞ
p

. For the parameters used in the simulations on equals 1 rad/s. If on is raised too much, the slower
adaptation dynamics will be coupled with the faster nominal dynamics. Fig. 7 compares the responses of ka for
g to be 0:3, 1 and 1:7, corresponding to an on of 1, 1:83 and 2.38 rad/s, respectively. It is seen that ka starts to
oscillate when on is about one eighth the characteristic frequency of the nominal system.
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Fig. 8. Experimental setup: 2D sketch (top), 3D schematic (bottom left) and the photo (bottom right).
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As mentioned in the previous section, g=k�a should also be chosen to be much smaller than the transient rate
(0.86 rad/s) of the nominal system. In the simulations g=k�a is about 0.006 rad/s. Obviously it is of the lesser
concern in this case.

4. Experimental results

The experimental setup is shown in Fig. 8. The inertia and the stiffness of the flexible plate are as given in
Section 2. The actuator is a moving-magnet voice-coil motor equipped with an LVDT. It has a maximum
stroke of 38.1mm and a maximum continuous force of 14N. The disturbance is generated by a rotary dc
servomotor controlled by a microcontroller. A 1-G accelerometer is glued to the middle of the flexible plate.
The signals of the accelerometer and the LVDT are measured through 12-bit AD converters. The control law
is digitized and written in C, and is implemented on a PC running in MS-DOS mode.

Fig. 9 shows the time response with the damped adaptive absorber of Eqs. (23)–(27). In the beginning the
value of ka is fixed; the adaptation algorithm is activated after 3 s. The exciting frequency is then arbitrarily
raised at 29 and 57 s. It is seen that oscillations are significantly reduced as ka is adapted to a proper value.

5. Conclusions

By emulating the dynamics of passive mechanical elements, a virtual vibration absorber is constructed and
is implemented via a linear actuator. The maximum adaptation rate for the virtual stiffness is obtained, and a
linearized dynamic equation about the target value is also derived. It is shown from simulations and
experiments that the analytic results are helpful in choosing the control parameters. The above development
also indicates that, while the disturbance frequency is uncertain, its possible range must be known in order to
devise an effective controller.
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